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Wavelet treatment of radial distribution functions of solutes
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Discrete wavelets are applied to parametrize the radial distribution functions of hydrated ions and hydro-
phobic solutes. The data on radial distribution functions are derived from the integral equation theory and
neutron scattering experiment. The Coifman and the discrete Meyer basis sets are used for the wavelet ap-
proximation. The quality of the approximation is verified by calculations of the solvation energy, the coordi-
nation number, and the change in chemical potential of solutes.
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I. MOTIVATION

The solvation structure around the solutes is commo
described in terms of the radial distribution function~RDF!,
representing a probability distribution of interatomic d
tance. The RDF theory has been quite successful in des
ing the behavior of various liquids, but has been able
provide analytical expressions of RDF only for very simp
fluids @1#. The development of a universal way for simp
parametrization of RDF could promise a successful study
solvation. However, the RDF parametrization is a rat
complex problem due to a complicated shape of RDF e
for simple solutes~Fig. 1!. The RDF reveals different fea
tures inside the two regions: it has pronounced peculiari
such as sharp peaks and slopes in the range from 0 to 5 Å~of
about 2 solvent diameterss), while the function oscillates
weakly in the range from 2s to infinity @2#. As a rule, the
RDF parametrization is distinct for these ranges@3,4# and,
hence, a special procedure is required to equate the app
mated RDFs and their derivatives at the boundary. The q
ity of the RDF approximation cannot be controlled with
high accuracy due to arising additional slopes or peaks.

The compact and accurate RDF parametrization is
lieved to be the subject of multiresolution analysis@5,6#. At
present there are special basis sets referred to as wavele@7#.
These basis sets consist of compactly supported wave
functions, which can be shifted and scaled@6–8#. The spe-
cial features of wavelets such as~bi!orthogonality and van-
ishing moments result in only several approximating coe
cients. That is the reason why wavelets are actively use
construct distribution functions in calculations of electron
structure @9#. We want to address ourselves the quest
whether wavelets can be advantageous to approximate R
in the classical domain. There is an attempt to apply wav
analysis for analyzing x-ray-diffraction patterns observed
glass @10#, which indicates that the wavelet approach
promising for treating experimental data. The main goal
our Brief Report is to apply discrete wavelets for appro
mating the RDF of solutes. Although some information
the RDFs can be obtained by the extrapolation of the data
concentrated solutions@11,12#, the most part of the informa
tion about RDFs of solutes is derived from simulations b
not from experiments because of experimental limitatio
Hence, additional efforts are required for modeling liqu
structure. In this Brief Report, we will use models based
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integral equation theory@13# as well as data of RDF obtaine
from neutron experiments@11#. Since the main criterion of
the RDF approximation concerns the calculations of vario
thermodynamic quantities of solvation, we will investiga
the influence of the wavelet basis set not only on the qua
of the RDF parametrization, but also on the thermodynam
parameters.

II. METHOD

We use the discrete wavelet transform@5,7# to parametrize
the RDFs. Any functionf (r )PL2(R) can be approximated
with the required accuracy as a wavelet series@7#:

f ~r !5(
b

am0 ,bwm0 ,b~r !1 (
m>m0

M

(
b

dm,bcm,b~r !, ~1!

where mPR1, bPR, w(r ) is the scaling function, while
c(r ) is the mother wavelet of the basis set$w(r ),c(r )% @7#.
In Eq. ~1!, the functionswm0 ,b(r ) andcm,b(r ) are generated
by integer translation and stretching~or squeezing!, b is the
translation parameter, whilem is the scaling factor indicating
the wavelet stretching~squeezing!. The first term in Eq.~1!
gives the crudest approximation forf (r ) at the chosen reso
lution ~scale!, m5m0, while the second term characterize
details at various scales,m from m0 to the finest levelM.

In numerical calculations of thea andd coefficients, we
can avoid the direct integration using the algorithm of fa
wavelet transform~FDWT! @5–7#. By choosing relevant ba
sis functions and scales, we can nullify most part of t
coefficientsa andd. Then the studied function can be reco
structed with the use of only nonzero coefficients withou
great loss of accuracy. The above feature of wavelet appr
mations is widely used to process signals and images, w
data should be compressed with minimal losses.

The typical way of wavelet approximation is as follow
@14#. The coefficients obtained by FDWT are sorted by d
creasing their modules and only the numberL of the largest
coefficients is treated, while other coefficients are nullifie
Then the inverse transform~recomposition! is applied. Note
that the numberL depends on the required accuracy. Ho
ever, the conventional scheme can be hardly applied
RDFs, since the coefficients of details are to be considere
large scales due to the sharp behavior of RDFs. Apart fr
this, the quality of the approximation is not high becau
©2003 The American Physical Society02-1
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FIG. 1. Experimental
potassium-water RDF@11# ob-
tained with ~dashed line! and
without smoothing~dotted line!,
and its wavelet approximation
~solid line!. The inset shows the
Gibbs effect: solid line corre-
sponds to the RDF approximate
by 25 FDWT coefficients, dashed
line is derived by smoothing of
the experimental data@11#.
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numerical boundary artifacts result in the Gibbs effect~inset
in Fig. 1!, i.e., false pulsations of the approximated RDF@7#.

We have developed an advanced scheme of the wav
approximation, which takes into account the peculiarities
RDF. First, we use a single basis set$w(r )% by applying a
nonuniform grid with a step decreasing in the vicinity of t
RDF peaks. As a result, the norm ofd coefficients is much
less than that ofa coefficients. Hence, all thed coefficients
can be ignored and the RDF is approximated as a comb
tion of scaling functionswm0 ,b(r ). Taking into account the
asymptotic behavior of RDF, we can decrease the numbe
required coefficients by an order. Considering the beha
g(R→0), we can nullify all the wavelet coefficients corre
sponding to the range@0,0.5Rmax#, whereRmax is the coordi-
nate of the first RDF peak. On the other hand, all thea
coefficients corresponding to the rangeR.6s are supposed
to be constant depending only on the wavelet scale. Th
using the relation between functions and their wavelet co
ficients @7,8#, we replace the wavelet coefficients by the
interpolated values. Summing all the facts, we propose
following scheme for RDF approximation:~1! we perform
FDWT at the largest scalem0 satisfying the condition
(budm0 ,bu<0.05(buam0 ,bu, then all thed coefficients are nul-

lified; ~2! all the coefficients corresponding to the rangeR
P@0,0.5Rmax# are also nullified;~3! all the coefficients cor-
responding toRP@6s,R`# are supposed to be constantC
52m0/2; ~4! only the coefficients corresponding to the RD
extrema are treated, while the rest coefficients are neglec
~5! to reconstruct the RDF, we apply the linear or spli
approximation to thea coefficients ignored at step~4!, and
use the coefficients corresponding to the RDF extrema
nodes for the approximation;~6! we perform the conven
tional inverse FDWT but for interpolated coefficients;~7! to
suppress the Gibbs effect~inset in Fig. 1!, the approximated
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RDF is to be equal to zero up toRcross, whereRcross is the
largest zero point of the approximated RDF, i.
gapp(Rcross)50.

The above scheme is a combination of the conventio
FDWT and the lifting procedure@8#. Due to the interpola-
tion, the expenses are not high and can be compensate
the benefit of application of the single basis set instead of
double one. Concerning the choice of the wavelet basis
we note that there are a lot of sets@7,8# to realize FDWT. We
have used two basis sets, namely, the Coifman (C2), and the
discrete Meyer~DM! sets. The main feature of the Coifma
basis is that the scaling functionw(r ) has the maximum
number of vanishing moments at the fixed support. The D
basis is a discrete approximation of continuous Meyer
@6#. The advantage of the DM basis is that there are ana
cal expressions for basis functions in the reciprocal sp
@6,7#. Nevertheless, the choice of the basis set depends on
concrete problem.

III. RESULTS AND DISCUSSION

To illustrate our scheme, we have investigated RDFs
neutral and charged hydrated solutes. We have treated
RDF of K1 taken from neutron data observed in a conce
trated aqueous solution@11#. Figure 1 depicts RDF of hy-
drated K1 obtained with and without smoothing of the Fo
rier transform of the experimental data@11#. The
coordination numberN54pr*0

r mg(r )r 2dr ~wherer m is the
first minimum of the RDF! can be used for testing the acc
racy of RDF data. It should be noted that both experimen
RDFs predict incorrect value of the coordination numb
The direct application of the Fourier transform~dashed line!
to the experimental data results in the sufficiently decrea
coordination number&2, while the smoothed RDF yield
2-2
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FIG. 2. The dependencies ofD
~a! and thermodynamic param
eters~b!–~d! on the numberL of
the coefficients. Dotted line repre
sents cosine basis, dashed lin
represents DM basis, and soli
line representsC2 basis. The left
icons correspond to the smoot
RDFs, while the right ones to the
sharp RDFs.
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N'33. The latter is due to the fact that the high-frequen
smoothing of RDF leads to the artificial broadening of t
RDF peaks. In contrast to this, our wavelet approximat
~solid line in Fig. 1! provides more adequate RDF withN
'7.5, which is comparable with other simulation data@15#.

To reveal possibilities of wavelets for approximatin
RDFs derived from simulations we have calculated RD
with the use of the integral equations based on the refere
interaction site model~RISM! @16#. The correlation functions
of pure water under the normal conditions were calculated
the RISM with the use of conventional procedure@13# on the
grid with the number of pointsn52048 and step sizedr
50.025 Å for the SPC/E potential@17#. The solute-water
site-site interactions are represented by the Lennard-J
potential and the coulomb term. For hydrophobic atomic s
utes, we use the size and energy parameters of Ref.@18#,
while for ions we apply the parameters of Ref.@19#. The
RDFs obtained by the calculations are approximated by
above wavelet procedure. We calculated mean square n
D5(1/n)A( i 51

n @g(r i)2gapp(r i)
2, where r i5 idr , g(r i) is

the ‘‘true’’ RDF andgapp(r i) is the approximated RDF. Fig
ure 2~a! depicts the dependence of the normD on the number
L of the coefficients. For comparison, we also depict
corresponding dependencies for the conventional cosine
proximation. Our study has revealed that the RDF under c
sideration can be classified in two types: smooth~for neutral
solutes! and extremely sharp~for charged solutes!. To control
the difference between these classes, we consider the n
of numerical derivativeh5(1/dr )A( i 51

n21@g(r i 11)2g(r i)
2.

The parameterh for sharp RDF is higher by a factor 2 or
than that for smooth functions. As it is seen from Fig. 2, t
approximation of the sharp RDF includes more approxim
ing coefficients than that of the smooth functions.

We have also evaluated thermodynamic characteristic
solvation such as the energy of solvationEs and chemical
potentialm given by the following expressions:
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j
E

0

`

uj~r !gj~r !r 2dr, ~2!

m52p(
j
E

0

`

$g j~r !@gj~r !21#22@gj~r !21#

12g j~r !%r 2dr,

wherej denotes site~hydrogen or oxygen! in water molecule,
uj (r ) is the ion-oxygen~hydrogen! interaction potential, and
r is the water density. The variableg j (r ) is the indirect
correlation function@1#. Figures 2~b! and 2~c! show the re-
sults of the calculations. As it is seen, the evaluation of th
modynamic characteristics is not good for the cosine
proximation. The same situation takes place also for
conventional wavelet approximation. The main reason
these peculiarities is the Gibbs effect~see inset in Fig. 1!,
which is more intensive for the cosine basis set. The therm
dynamic quantities are strongly affected by minor false p
sations of RDF atr'0. Due to our scheme, we avoid th
Gibbs effect and calculate accurately the thermodynamic
rameters. Table I includes the obtained results for the RD
of hydrated ions and atoms derived from the integral eq
tion theory. In the table,dN0 is the relative error of the
coordination number,dm is the same for the chemical poten
tial, dEs is for the solvation energy, andD is the norm of
inaccuracy. The symbols ‘‘Sh’’ and ‘‘ S’’ denote sharp and
smooth types of RDFs. We use the wavelet approximat
with 5–7 coefficients for the smooth RDFs and 7–9 coe
cients for the sharp functions. As it is seen, the quality
approximation is rather good for the combined schem
while the number of approximating coefficients is small.

Our study indicates that the discrete wavelets are a s
able and powerful instrument to approximate distributi
functions of classical solutes. Due to this the wavelets
well localized in the real and reciprocal space@7,14#, they
2-3
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TABLE I. The numberL of the coefficients, relative errors for the RDFs approximated by theC2 set. In
parenthesis are the same values for the DM basis.

Type Solute L dN0 (%) dm (%) dEs (%) D

S CH4 5 1.0 ~2.1! 0.5 ~5.0! 7.3 ~3.9! 0.831023 (0.531023)
S Ar 5 1.0 ~1.8! 0.5 ~4.7! 7.2 ~3.8! 0.831023 (0.531023)
Sh Cl2 9 3.5 ~7.0! 3.7 ~5.0! 8.5 ~5.0! 1.131023 (1.231023)
Sh Br2 9 5.1 ~10.5! 4.0 ~5.0! 10.5 ~5.0! 1.231023 (1.431023)
Sh Na1 7 1.6 ~3.2! 1.2 ~3.7! 7.5 ~4.5! 1.131023 (1.231023)
Sh K1 7 2.5 ~4,0! 1.3 ~5.5! 7.4 ~4.7! 1.231023 (1.431023)
S Ne 5 1.0 ~1.7! 0.8 ~3.5! 7.0 ~3.8! 0.831023 (0.531023)
S Kr 5 1.0 ~1.9! 0.7 ~3.4! 7.1 ~3.9! 0.831023 (0.531023)
S Xe 5 0.9 ~1.5! 0.7 ~3.7! 7.2 ~3.9! 0.931023 (0.731023)
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can provide accurate approximation of RDF without ad
tional broadening of RDF peaks. Using wavelets we are a
to obtain correct values of thermodynamic parameters of
vation. The applied scheme of the wavelet approximat
allows us to treat RDF with small number of approximati
coefficients. For example, our procedure provides the ac
racy of approximation of aboutD;0.531023, which is
higher approximately by two orders of magnitude than t
obtained within the approximation based on combination
polynoms, exponents, and cosines@3#.

Since our procedure is based on conventional FDW
only the coefficients of the corresponding wavelet filte
should be replaced to perform the change of the basis se@7#.
We have used theC2 and DM wavelets taking into accoun
the following objectives. The scaling function of theC2 ba-
sis set has the maximum number of vanishing moments,
the larger is the number, the better is the approximation
singular points of the studied function@7#. Hence, using the
C2 wavelets we can treat accurately the sharp peaks of R
However, the DM wavelets are more preferable for t
t
-

02770
-
le
l-
n

u-

t
f

,

ut
r

F.
e

calculations of thermodynamic parameters since the D
basis set is more regular than theC2 basis set.

Because the real three-dimensional solvation structur
more interesting for the applications, a question arises
how the wavelet scheme can be extended to the th
dimensional case. At present there are several approach
the problem. The most popular of them is based on the ten
product of the basis functions@20#. Another approach is to
use continuous wavelets of the sombrero~Mexican hat! or
Morle types @7#, which have a explicit expression for th
basis functions. In this case, all the coefficients can be
tained analytically. However, since the sombrero~Mexican
hat! and Morle sets are not orthogonal, the obtained coe
cients of the wavelet expansion do not provide exact reco
position of the studied function and can result in sufficie
numerical artifacts. We believe that the search of new w
should be carried out in the reciprocal space with applicat
of the Meyer set.
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