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Wavelet treatment of radial distribution functions of solutes
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Discrete wavelets are applied to parametrize the radial distribution functions of hydrated ions and hydro-
phobic solutes. The data on radial distribution functions are derived from the integral equation theory and
neutron scattering experiment. The Coifman and the discrete Meyer basis sets are used for the wavelet ap-
proximation. The quality of the approximation is verified by calculations of the solvation energy, the coordi-
nation number, and the change in chemical potential of solutes.
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I. MOTIVATION integral equation theorjl 3] as well as data of RDF obtained
from neutron experimentgll]. Since the main criterion of
The solvation structure around the solutes is commonlyghe RDF approximation concerns the calculations of various
described in terms of the radial distribution functigRDF), ~ thermodynamic quantities of solvation, we will investigate
representing a probability distribution of interatomic dis- the influence of the wavelet basis set not only on the quality
tance. The RDF theory has been quite successful in descril¢f the RDF parametrization, but also on the thermodynamic
ing the behavior of various liquids, but has been able tdParameters.
provide analytical expressions of RDF only for very simple
fluids [1]. The development of a universal way for simple Il. METHOD
parametrization of RDF could promise a successful study of
solvation. However, the RDF parametrization is a rathe
complex problem due to a complicated shape of RDF eve
for simple soluteqFig. 1). The RDF reveals different fea-
tures inside the two regions: it has pronounced peculiarities M
such as sharp peaks and slopes in the range from O't(305 A f(r)=>, A, b®mgb(1) + > > A p¥mp(r), (1)
about 2 solvent diameters), while the function oscillates b m=mg b
weakly in the range from @ to infinity [2]. As a rule, the . . i ) i
RDF parametrization is distinct for these rangasd] and, WheremeR", beR, ¢(r) is the scaling function, while
hence, a special procedure is required to equate the appro#{r) is the mother wavelet of the basis $et(r),y(r)} [7].
mated RDFs and their derivatives at the boundary. The quall Ed. (1), the functionser, n(r) andymp(r) are generated
ity of the RDF approximation cannot be controlled with a by integer translation and stretchiigr squeezing b is the
high accuracy due to arising additional slopes or peaks. translation parameter, whilais the scaling factor indicating
The compact and accurate RDF parametrization is bethe wavelet stretchingsqueezing The first term in Eq(1)
lieved to be the subject of multiresolution analylis6]. At gives the crudest approximation fofr) at the chosen reso-
present there are special basis sets referred to as walets lution (scalg, m=mg, while the second term characterizes
These basis sets consist of compactly supported wavelikéetails at various scales) from mq to the finest leveM.
functions, which can be shifted and scal&d-8]. The spe- In numerical calculations of tha andd coefficients, we
cial features of wavelets such @ési)orthogonality and van- can avoid the direct integration using the algorithm of fast
ishing moments result in only several approximating coeffi-wavelet transform{FDWT) [5-7]. By choosing relevant ba-
cients. That is the reason why wavelets are actively used teis functions and scales, we can nullify most part of the
construct distribution functions in calculations of electronic coefficientsa andd. Then the studied function can be recon-
structure[9]. We want to address ourselves the questiorstructed with the use of only nonzero coefficients without a
whether wavelets can be advantageous to approximate RDIgseat loss of accuracy. The above feature of wavelet approxi-
in the classical domain. There is an attempt to apply wavelemations is widely used to process signals and images, which
analysis for analyzing x-ray-diffraction patterns observed indata should be compressed with minimal losses.
glass[10], which indicates that the wavelet approach is The typical way of wavelet approximation is as follows
promising for treating experimental data. The main goal of{14]. The coefficients obtained by FDWT are sorted by de-
our Brief Report is to apply discrete wavelets for approxi-creasing their modules and only the numbeof the largest
mating the RDF of solutes. Although some information of coefficients is treated, while other coefficients are nullified.
the RDFs can be obtained by the extrapolation of the data ofihen the inverse transforinecomposition is applied. Note
concentrated solutiorjd1,12], the most part of the informa- that the numbet depends on the required accuracy. How-
tion about RDFs of solutes is derived from simulations butever, the conventional scheme can be hardly applied to
not from experiments because of experimental limitationsRDFs, since the coefficients of details are to be considered at
Hence, additional efforts are required for modeling liquidlarge scales due to the sharp behavior of RDFs. Apart from
structure. In this Brief Report, we will use models based orthis, the quality of the approximation is not high because

p We use the discrete wavelet transfdidp7] to parametrize
II1he RDFs. Any functiorf(r) e L?(R) can be approximated
with the required accuracy as a wavelet sefi8s

1063-651X/2003/6@)/0277024)/$20.00 68 027702-1 ©2003 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B8, 027702 (2003

3 T T

25

FIG. 1. Experimental
potassium-water RDF[11] ob-
tained with (dashed ling and
without smoothing(dotted linsg,
and its wavelet approximation
(solid line). The inset shows the
Gibbs effect: solid line corre-
sponds to the RDF approximated
by 25 FDWT coefficients, dashed
line is derived by smoothing of
the experimental datdl1].
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numerical boundary artifacts result in the Gibbs eff@eset RDF is to be equal to zero up ®.,,ss, WhereR,ss 1S the

in Fig. 1), i.e., false pulsations of the approximated RDFE  largest zero point of the approximated RDF, i.e.,
We have developed an advanced scheme of the wavelgt,,,(Rcrosd =0.

approximation, which takes into account the peculiarities of The above scheme is a combination of the conventional

RDF. First, we use a single basis dei(r)} by applying a FDWT and the lifting procedurg8]. Due to the interpola-

nonuniform grid with a step decreasing in the vicinity of the tion, the expenses are not high and can be compensated by

RDF peaks. As a result, the norm dfcoefficients is much the benefit of application of the single basis set instead of the

less than that o& coefficients. Hence, all thd coefficients  double one. Concerning the choice of the wavelet basis set,

can be ignored and the RDF is approximated as a combinave note that there are a lot of s¢%8] to realize FDWT. We

tion of scaling functionszpmoyb(r). Taking into account the have used two basis sets, namely, the Coifn@2)( and the

asymptotic behavior of RDF, we can decrease the number dfiscrete Meye(DM) sets. The main feature of the Coifman
required coefficients by an order. Considering the behavioPasis is that the scaling functiop(r) has the maximum
g(R—0), we can nullify all the wavelet coefficients corre- number of vanishing moments at the fixed support. The DM
sponding to the range,0.5Ra,), WhereR, ., is the coordi-  basis is a discrete approximation of continuous Meyer set
nate of the first RDF peak. On the other hand, all the [6]. The advantage of the DM basis is that there are analyti-
coefficients corresponding to the ranBe-6¢ are supposed cal expressions for basis functions in the reciprocal space
to be constant depending only on the wavelet scale. Theh6.7]. Nevertheless, the choice of the basis set depends on the
using the relation between functions and their wavelet coefconcrete problem.

ficients [7,8], we replace the wavelet coefficients by their
interpolated values. Summing all the facts, we propose the

. . . III. RESULTS AND DISCUSSION
following scheme for RDF approximatioril) we perform

FDWT at the largest scalen, satisfying the condition
Eb|dm0,b| $0-052b|am0,b|, then all thed coefficients are nul-

lified; (2) all the coefficients corresponding to the rarige

To illustrate our scheme, we have investigated RDFs of
neutral and charged hydrated solutes. We have treated the
RDF of K* taken from neutron data observed in a concen-

€[0,0.5Rmad are also nullifiedy3) all the coefficients cor- trated aqueous solutiofi1]. Figure 1 depicts RDF of hy-
responding toRe[6a,R..] are supposed to be constadt Qrated K" obtained with and Wlth.out smoothing of the Fou-
—2m/2. (4) only the coefficients corresponding to the RDF fer transform of the experimental datqll]. The
extrema are treated, while the rest coefficients are neglecte@ordination numbeN=4mp["g(r)rdr (wherer , is the

(5) to reconstruct the RDF, we apply the linear or splinefirst minimum of the RDFFcan be used for testing the accu-
approximation to the coefficients ignored at stef@), and racy of RDF data. It should be noted that both experimental
use the coefficients corresponding to the RDF extrema aRDFs predict incorrect value of the coordination number.
nodes for the approximatioi) we perform the conven- The direct application of the Fourier transfofoashed ling
tional inverse FDWT but for interpolated coefficientg) to  to the experimental data results in the sufficiently decreased
suppress the Gibbs effe@hset in Fig. 1, the approximated coordination numbers2, while the smoothed RDF yields
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FIG. 2. The dependencies Af
(@ and thermodynamic param-
eters(b)—(d) on the numbelL of
the coefficients. Dotted line repre-
sents cosine basis, dashed line
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T . represents DM basis, and solid
® " s | reneraenns ) line represent2 basis. The left
z 107 | e mmm——— it e mrrnzsd ©) icons correspond to the smooth
© RDFs, while the right ones to the
sharp RDFs.
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N=~33. The latter is due to the fact that the high-frequency © )

smoothing of RDF leads to the artificial broadening of the Es=4m>, f ul(r)g'(r)r&dr, (%)
RDF peaks. In contrast to this, our wavelet approximation boo

(solid line in Fig. 12 provides more adequate RDF witth

~7.5, which is comparable with other simulation dgia)]. #22772 f {(Y(r)[g(r)—11-2[g'(r)—1]
To reveal possibilities of wavelets for approximating 1 Jo
RDFs derived from simulations we have calculated RDFs +295(r)br2dr

with the use of the integral equations based on the reference

interaction site modegRISM) [16]. The correlation functions \wherej denotes sit¢hydrogen or oxygenin water molecule,
of pure water under the normal conditions were calculated b)[,i(r) is the ion-oxyger(hydrogen interaction potential, and
the RISM with the use of conventional procedit8] onthe |, is the water density. The variablg/(r) is the indirect
grid with the number of pointy=2048 and step sizér  correlation functior[1]. Figures 2b) and Zc) show the re-
=0.025 A for the SPC/E potentidll7]. The solute-water syits of the calculations. As it is seen, the evaluation of ther-
site-site interactions are represented by the Lennard—Jon%dynamiC characteristics is not good for the cosine ap-
potential and the coulomb term. For hydrophobic atomic solproximation. The same situation takes place also for the
utes, we use the size and energy parameters of [R8f,  conventional wavelet approximation. The main reason for
while for ions we apply the parameters of RE19]. The these peculiarities is the Gibbs effesie inset in Fig. X
RDFs obtained by the calculations are approximated by thghich is more intensive for the cosine basis set. The thermo-
above wavelet procedure. We calculated mean square Norgynamic quantities are strongly affected by minor false pul-
A=(1n) V=L 1[0(r)) —Gapp(ri)% wherer;=idr, g(r;) is  sations of RDF at~0. Due to our scheme, we avoid the
the “true” RDF andg,,(r;) is the approximated RDF. Fig- Gibbs effect and calculate accurately the thermodynamic pa-
ure 2a) depicts the dependence of the natnon the number rameters. Table | includes the obtained results for the RDFs
L of the coefficients. For comparison, we also depict theof hydrated ions and atoms derived from the integral equa-
corresponding dependencies for the conventional cosine agion theory. In the tabledN, is the relative error of the
proximation. Our study has revealed that the RDF under coneoordination numbedu is the same for the chemical poten-
sideration can be classified in two types: smadtn neutral  tial, SE is for the solvation energy, andl is the norm of
solutes and extremely shar(for charged solutgsTo control  inaccuracy. The symbolsSh and “S” denote sharp and
the difference between these classes, we consider the nomooth types of RDFs. We use the wavelet approximation
of numerical derivative;7=(1/5r)\/E{‘Qll[g(riﬂ)—g(ri)z. with 5—7 coefficients for the smooth RDFs and 7-9 coeffi-
The parameter, for sharp RDF is higher by a factor 2 or 3 cients for the sharp functions. As it is seen, the quality of
than that for smooth functions. As it is seen from Fig. 2, theapproximation is rather good for the combined scheme,
approximation of the sharp RDF includes more approximatwhile the number of approximating coefficients is small.
ing coefficients than that of the smooth functions. Our study indicates that the discrete wavelets are a suit-
We have also evaluated thermodynamic characteristics afble and powerful instrument to approximate distribution
solvation such as the energy of solvatiBg and chemical functions of classical solutes. Due to this the wavelets are
potential . given by the following expressions: well localized in the real and reciprocal spddel4], they
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TABLE I. The numberL of the coefficients, relative errors for the RDFs approximated byOPeset. In
parenthesis are the same values for the DM basis.

Type Solute L 6Ny (%) Su (%) OEg (%) A

S CH, 5 1.0 (2.1 0.5 (5.0 7.3 (3.9 0.8x10 2 (0.5x10 %)
S Ar 5 1.0 (1.8 0.5 (4.7 7.2 (3.9 0.8x10 2 (0.5x10°3)
Sh cl- 9 3.5 (7.0 3.7 (5.0 8.5 (5.0 1.1x10 3 (1.2x10 ?)
Sh Br- 9 5.1 (10.5 4.0 (5.0 10.5 (5.0 1.2x10°3 (1.4x107%)
Sh Na* 7 1.6 (3.2 1.2 (3.7 7.5 (4.5 1.1x10°3 (1.2x10" %)
Sh K* 7 2.5 (4,0 1.3 (5.5 7.4 (4.7 1.2x10°3 (1.4x10" %)
S Ne 5 1.0(1.7) 0.8 (3.5 7.0 (3.9 0.8x10° 2 (0.5x10°3)
S Kr 5 1.0 (1.9 0.7 (3.9 7.1 (3.9 0.8x10 2 (0.5x 10 %)
S Xe 5 0.9 (1.5 0.7 (3.7 7.2 (3.9 0.9x10 2 (0.7x10° %)

can provide accurate approximation of RDF without addi-calculations of thermodynamic parameters since the DM
tional broadening of RDF peaks. Using wavelets we are abl@asis set is more regular than 82 basis set. .
to obtain correct values of thermodynamic parameters of sol- Because the real three-dimensional solvation structure is

: - ... more interesting for the applications, a question arises that
vation. The applied scheme of the wavelet approximatio !
PP PP ow the wavelet scheme can be extended to the three-

aIIovv_s_us o treat RDF with small number of a.pprox"m‘tmgdimensional case. At present there are several approaches to
coefficients. For example, our procedure p[cg)wdeg the acCype problem. The most popular of them is based on the tensor
racy of approximation of abouf~0.5x10"%, which is  nroduct of the basis functiorf0]. Another approach is to
higher approximately by two orders of magnitude than thajyse continuous wavelets of the sombrékexican hat or
obtained within the approximation based on combination ofiViorle types[7], which have a explicit expression for the
polynoms, exponents, and cosifés. basis functions. In this case, all the coefficients can be ob-
Since our procedure is based on conventional FDWTfained analytically. However, since the sombrékéexican
only the coefficients of the corresponding wavelet filtershad and Morle sets are not orthogonal, the obtained coeffi-
should be replaced to perform the change of the bas{gset cients of the wavelet expansion do not provide exact recom-
the following objectives. The scaling function of t&2 ba- numerical artifacts. We believe that the search of new ways

sis set has the maximum number of vanishing moments, puihould be carried out in the reciprocal space with application
the larger is the number, the better is the approximation fon the Meyer set.

singular points of the studied functigi]. Hence, using the The authors are thankful to E. A. Arinstein and Gary N.

C2 wavelets we can treat accurately the sharp peaks of RDBarkisov for fruitful discussions. This work was supported

However, the DM wavelets are more preferable for theby the Russian Foundation of Basic Research.
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